Constructing Features for Screening Neurodevelopmental Disorders Using Grammatical Evolution

Author:

Toki Eugenia I.12ORCID,Tatsis Giorgos13ORCID,Pange Jenny2ORCID,Tsoulos Ioannis G.4

Affiliation:

1. Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Panepistimioupoli B’, 45500 Ioannina, Greece

2. Laboratory of New Technologies and Distance Learning, Department of Early Childhood Education, School of Education, University of Ioannina, Panepistimioupoli, 45110 Ioannina, Greece

3. Physics Department, University of Ioannina, 45110 Ioannina, Greece

4. Department of Informatics and Telecommunications, University of Ioannina, 47150 Kostaki Artas, Greece

Abstract

Developmental domains refer to different areas of a child’s growth and maturation, including physical, language, cognitive, and social–emotional skills. Understanding these domains helps parents, caregivers, and professionals track a child’s progress and identify potential areas of concern. Nevertheless, due to the high level of heterogeneity and overlap, neurodevelopmental disorders may go undiagnosed in children for a crucial period. Detecting neurodevelopmental disorders at an early stage is fundamental. Digital tools like artificial intelligence can help clinicians with the early detection process. To achieve this, a new method has been proposed that creates artificial features from the original ones derived from the SmartSpeech project, using a feature construction procedure guided by the Grammatical Evolution technique. The new features from a machine learning model are used to predict neurodevelopmental disorders. Comparative experiments demonstrated that using the feature creation method outperformed other machine learning methods for predicting neurodevelopmental disorders. In many cases, the reduction in the test error reaches up to 65% to the next better one.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3