Deep Learning-Based Hip X-ray Image Analysis for Predicting Osteoporosis

Author:

Feng Shang-Wen1,Lin Szu-Yin2,Chiang Yi-Hung1ORCID,Lu Meng-Han2,Chao Yu-Hsiang2

Affiliation:

1. Department of Orthopedics, National Yang Ming Chiao Tung University Hospital, Yilan 260, Taiwan

2. Department of Computer Science and Information Engineering, National Ilan University, Yilan 260, Taiwan

Abstract

Osteoporosis is a common problem in orthopedic medicine, and it has become an important medical issue in orthopedics as Taiwan is gradually becoming an aging society. In the diagnosis of osteoporosis, the bone mineral density (BMD) derived from dual-energy X-ray absorptiometry (DXA) is the main criterion for orthopedic diagnosis of osteoporosis, but due to the high cost of this equipment and the lower penetration rate of the equipment compared to the X-ray images, the problem of osteoporosis has not been effectively solved for many people who suffer from osteoporosis. At present, in clinical diagnosis, doctors are not yet able to accurately interpret X-ray images for osteoporosis manually and must rely on the data obtained from DXA. In recent years, with the continuous development of artificial intelligence, especially in the fields of machine learning and deep learning, significant progress has been made in image recognition. Therefore, it is worthwhile to revisit the question of whether it is possible to use a convolutional neural network model to read a hip X-ray image and then predict the patient’s BMD. In this study, we proposed a hip X-ray image segmentation model and a hip X-ray image recognition classification model. First, we used the U-Net model as a framework to segment the femoral neck, greater trochanter, Ward’s triangle, and the total hip in the hip X-ray images. We then performed image matting and data augmentation. Finally, we constructed a predictive model for osteoporosis using deep learning algorithms. In the segmentation experiments, we used intersection over union (IoU) as the evaluation metric for image segmentation, and both the U-Net model and the U-Net++ model achieved segmentation results greater than or equal to 0.5. In the classification experiments, using the T-score as the classification basis, the total hip using the DenseNet121 model has the highest accuracy of 74%.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. An overview and management of osteoporosis;Sozen;Eur. J. Rheumatol.,2017

2. Osteoporosis Prevention, Screening, and Treatment: A Review;Kling;J. Women’s Health,2014

3. Mayo Clinic (2023, September 21). Osteoporosis-Symptoms and Causes. Available online: https://www.mayoclinic.org/diseases-conditions/osteoporosis/symptoms-causes/syc-20351968.

4. Ultrasound in the diagnosis of clinical orthopedics: The orthopedic stethoscope;Blankstein;World J. Orthop.,2011

5. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis;Blake;Postgrad. Med. J.,2007

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3