A 3D-0D Computational Model of the Left Ventricle for Investigating Blood Flow Patterns for Cases of Systolic Anterior Motion and after Anterior Mitral Leaflet Splitting

Author:

Alharbi Yousef1ORCID

Affiliation:

1. College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

Valvular heart conditions significantly contribute to the occurrence of cardiovascular disease, affecting around 2–3 million people in the United States. The anatomical characteristics of cardiac muscles and valves can significantly influence blood flow patterns inside the ventricles. Understanding the interaction between the mitral valve and left ventricle structures enables using fluid–structure interaction simulations as a precise and user-friendly approach to investigating outcomes that cannot be captured using experimental approaches. This study aims to develop a 3D-0D computational model to simulate the consequences of extending the anterior mitral leaflet towards the left ventricle in the presence of the thickness of the left ventricular septum and the mitral valve device. The simulations presented in this paper successfully showcased the ability of the model to replicate occlusion occurring at the left ventricular outflow tract and illustrated the impact of this blockage on the flow pattern and pressure gradient. Furthermore, these simulations conducted following anterior mitral leaflet splitting can emphasize the significance of this technique in reducing the obstruction at the left ventricle outflow tract. The computational model presented in this study, combining 3D and 0D elements, provides significant insights into the flow patterns occurring in the left ventricle before and after anterior leaflet splitting. Thus, expanding this model can help explore other cardiac phenomena and investigate potential post-procedural complications.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3