Analysis of the Distribution Pattern of Remaining Oil and Development Potential after Weak Gel Flooding in the Offshore LD Oilfield

Author:

Ge Lizhen1,Chen Xiaoming1,Wang Gang1,Zhang Guohao1,Li Jinyi1,Liu Yang2,Xiao Lixiao2,Wen Yuchen2,Yuan Weifeng2ORCID,Qu Ming3ORCID,Bai Mingxing4

Affiliation:

1. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China

2. Research Institute of Unconventional Petroleum Science and Technology, China University of Petroleum (Beijing), Beijing 102249, China

3. SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Sanya 572025, China

4. College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China

Abstract

The LD oilfield is one of the representative offshore oilfields. After weak gel flooding, the recovery rate is significantly improved. However, the oilfield is then in a medium- to high-water content stage, presenting a complex distribution of the remaining oil. The measures for further enhanced oil recovery (EOR) are uncertain. As a result, it is necessary to clarify the distribution pattern and development potential of the remaining oil during the high-water content period after weak gel flooding. In this study, an online nuclear magnetic resonance (NMR) oil displacement experiment and microscopic oil displacement experiment were conducted, and the mechanisms of weak gel flooding and the distribution pattern of the remaining oil were clarified in the LD oilfield. Additionally, high-multiple water flooding and numerical simulation experiments were conducted to analyze the development potential after weak gel flooding. The results show that the effect of weak gel flooding was more significant in the core of 1500 mD, with an increase in oil recovery of 9% compared to 500 mD. At a permeability of 500 mD, the degree of crude oil mobilization in micropores and small pores caused by weak gel flooding was improved by 29.64% and 23.48%, respectively, compared with water flooding. At 1500 mD, the degree of crude oil mobilization in small pores caused by weak gel flooding was increased by 37.79% compared to water flooding. After weak gel flooding, the remaining oil was primarily distributed in medium and large pores. Microscopically, the remaining oil was dominated by cluster residual oil, accounting for 16.49%, followed by columnar, membranous, and blind-end residual oil. High multiple water flooding experiments demonstrated that weak gel flooding could significantly reduce development time. The ultimate oil recovery efficiency of 500 mD and 1500 mD reached 71.85% and 80.69%, respectively. Numerical simulation results show that the ultimate oil recovery efficiency increased from 62.04% to 71.3% after weak gel flooding. This indicated that the LD oilfield still had certain development potential after weak gel flooding. The subsequent direction for enhanced oil recovery focuses mainly on mobilizing oil in medium pores or clustered remaining oil. This will play a crucial role in further exploring methods for utilizing the remaining oil and increasing the recovery rate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3