Disrupted Effective Connectivity within the Fronto-Thalamic Circuit in Pontine Infarction: A Spectral Dynamic Causal Modeling Study

Author:

Chen Huiyou1,Mao Qianqian1,Zhang Yujie1,Shi Mengye1,Geng Wen1,Ma Yuehu1,Chen Yuchen1,Yin Xindao1

Affiliation:

1. Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

Abstract

This study aims to investigate alterations in effective connectivity (EC) within the fronto-thalamic circuit and their associations with motor and cognitive declines in pontine infarction (PI). A total of 33 right PI patients (RPIs), 38 left PI patients (LPIs), and 67 healthy controls (HCs) were recruited. The spectral dynamic causal modeling (spDCM) approach was used for EC analysis within the fronto-thalamic circuit, including the thalamus, caudate, supplementary motor area (SMA), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). The EC differences between different sides of the patients and HCs were assessed, and their correlations with motor and cognitive dysfunctions were analyzed. The LPIs showed increased EC from the mPFC to the R-SMA and decreased EC from the L-thalamus to the ACC, the L-SMA to the R-SMA, the R-caudate to the R-thalamus, and the R-thalamus to the ACC. For RPIs, the EC of the R-caudate to the mPFC, the L-thalamus and L-caudate to the L-SMA, and the L-caudate to the ACC increased obviously, while a lower EC strength was shown from the L-thalamus to the mPFC, the LSMA to the R-caudate, and the R-SMA to the L-thalamus. The EC from the R-caudate to the mPFC was negatively correlated with the MoCA score for RPIs, and the EC from the R-caudate to the R-thalamus was negatively correlated with the FMA score for LPIs. The results demonstrated EC within the fronto-thalamic circuit in PI-related functional impairments and reveal its potential as a novel imaging marker.

Funder

Jiangsu Provincial Special Program of Medical Science

Nanjing Medical Technology Development Fund Project

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3