Alterations of Thalamic Nuclei Volumes and the Intrinsic Thalamic Structural Network in Patients with Multiple Sclerosis-Related Fatigue

Author:

Li Yujing,Wang Jun,Yang Tingli,Zhang Pengfei,Ai Kai,Li Min,Wang Rui,Ren Xinying,Xiong DiaohanORCID,Liu Guangyao,Han Na,Gan Tiejun,Zhang JingORCID

Abstract

Fatigue is a debilitating and prevalent symptom of multiple sclerosis (MS). The thalamus is atrophied at an earlier stage of MS and although the role of the thalamus in the pathophysiology of MS-related fatigue has been reported, there have been few studies on intra-thalamic changes. We investigated the alterations of thalamic nuclei volumes and the intrinsic thalamic network in people with MS presenting fatigue (F-MS). The network metrics comprised the clustering coefficient (Cp), characteristic path length (Lp), small-world index (σ), local efficiency (Eloc), global efficiency (Eglob), and nodal metrics. Volumetric analysis revealed that the right anteroventral, right central lateral, right lateral geniculate, right pulvinar anterior, left pulvinar medial, and left pulvinar inferior nuclei were atrophied only in the F-MS group. Furthermore, the F-MS group had significantly increased Lp compared to people with MS not presenting fatigue (NF-MS) (2.9674 vs. 2.4411, PAUC = 0.038). The F-MS group had significantly decreased nodal efficiency and betweenness centrality of the right mediodorsal medial magnocellular nucleus than the NF-MS group (false discovery rate corrected p < 0.05). The F-MS patients exhibited more atrophied thalamic nuclei, poorer network global functional integration, and disrupted right mediodorsal medial magnocellular nuclei interconnectivity with other nuclei. These findings might aid the elucidation of the underlying pathogenesis of MS-related fatigue.

Funder

National Natural Science Foundation of China

Talent Innovation and Entrepreneurship Project of Lanzhou

Lanzhou University Second Hospital “Cuiying Technology Innovation Plan” Applied Basic Research Project

Gansu Province Clinical Research Center for Functional and Molecular Imaging

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3