Competing Visual Cues Revealed by Electroencephalography: Sensitivity to Motion Speed and Direction

Author:

Rassam Rassam1,Chen Qi1,Gai Yan1

Affiliation:

1. Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO 63103, USA

Abstract

Motion speed and direction are two fundamental cues for the mammalian visual system. Neurons in various places of the neocortex show tuning properties in term of firing frequency to both speed and direction. The present study applied a 32-channel electroencephalograph (EEG) system to 13 human subjects while they were observing a single object moving with different speeds in various directions from the center of view to the periphery on a computer monitor. Depending on the experimental condition, the subjects were either required to fix their gaze at the center of the monitor while the object was moving or to track the movement with their gaze; eye-tracking glasses were used to ensure that they followed instructions. In each trial, motion speed and direction varied randomly and independently, forming two competing visual features. EEG signal classification was performed for each cue separately (e.g., 11 speed values or 11 directions), regardless of variations in the other cue. Under the eye-fixed condition, multiple subjects showed distinct preferences to motion direction over speed; however, two outliers showed superb sensitivity to speed. Under the eye-tracking condition, in which the EEG signals presumably contained ocular movement signals, all subjects showed predominantly better classification for motion direction. There was a trend that speed and direction were encoded by different electrode sites. Since EEG is a noninvasive and portable approach suitable for brain–computer interfaces (BCIs), this study provides insights on fundamental knowledge of the visual system as well as BCI applications based on visual stimulation.

Funder

SLU

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3