Resting-State Neuronal Activity and Functional Connectivity Changes in the Visual Cortex after High Altitude Exposure: A Longitudinal Study

Author:

Zhang XinjuanORCID,Kang Taishan,Liu Yanqiu,Yuan Fengjuan,Li Minglu,Lin Jianzhong,Zhang Jiaxing

Abstract

Damage to the visual cortex structures after high altitude exposure has been well clarified. However, changes in the neuronal activity and functional connectivity (FC) of the visual cortex after hypoxia/reoxygenation remain unclear. Twenty-three sea-level college students, who took part in 30 days of teaching at high altitude (4300 m), underwent routine blood tests, visual behavior tests, and magnetic resonance imaging scans before they went to high altitude (Test 1), 7 days after they returned to sea level (Test 2), as well as 3 months (Test 3) after they returned to sea level. In this study, we investigated the hematological parameters, behavioral data, and spontaneous brain activity. There were significant differences among the tests in hematological parameters and spontaneous brain activity. The hematocrit, hemoglobin concentration, and red blood cell count were significantly increased in Test 2 as compared with Tests 1 and 3. As compared with Test 1, Test 3 increased amplitudes of low-frequency fluctuations (ALFF) in the right calcarine gyrus; Tests 2 and 3 increased ALFF in the right supplementary motor cortex, increased regional homogeneity (ReHo) in the left lingual gyrus, increased the voxel-mirrored homotopic connectivity (VMHC) value in the motor cortex, and decreased FC between the left lingual gyrus and left postcentral gyrus. The color accuracy in the visual task was positively correlated with ALFF and ReHo in Test 2. Hypoxia/reoxygenation increased functional connection between the neurons within the visual cortex and the motor cortex but decreased connection between the visual cortex and motor cortex.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3