Improving the Sensitivity of Task-Based Multi-Echo Functional Magnetic Resonance Imaging via T2* Mapping Using Synthetic Data-Driven Deep Learning

Author:

Zhao Yinghe1,Yang Qinqin1ORCID,Qian Shiting1,Dong Jiyang1ORCID,Cai Shuhui1ORCID,Chen Zhong1,Cai Congbo1

Affiliation:

1. Department of Electronic Science, Xiamen University, Xiamen 361005, China

Abstract

(1) Background: Functional magnetic resonance imaging (fMRI) utilizing multi-echo gradient echo-planar imaging (ME-GE-EPI) has demonstrated higher sensitivity and stability compared to utilizing single-echo gradient echo-planar imaging (SE-GE-EPI). The direct derivation of T2* maps from fitting multi-echo data enables accurate recording of dynamic functional changes in the brain, exhibiting higher sensitivity than echo combination maps. However, the widely employed voxel-wise log-linear fitting is susceptible to inevitable noise accumulation during image acquisition. (2) Methods: This work introduced a synthetic data-driven deep learning (SD-DL) method to obtain T2* maps for multi-echo (ME) fMRI analysis. (3) Results: The experimental results showed the efficient enhancement of the temporal signal-to-noise ratio (tSNR), improved task-based blood oxygen level-dependent (BOLD) percentage signal change, and enhanced performance in multi-echo independent component analysis (MEICA) using the proposed method. (4) Conclusion: T2* maps derived from ME-fMRI data using the proposed SD-DL method exhibit enhanced BOLD sensitivity in comparison to T2* maps derived from the LLF method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3