Altered Functional Connectivity Density in Type 2 Diabetes Mellitus with and without Mild Cognitive Impairment

Author:

Zhang Dongsheng,Liu Shasha,Huang Yang,Gao Jie,Liu Weirui,Liu Wanting,Ai Kai,Lei Xiaoyan,Zhang Xiaoling

Abstract

Although disturbed functional connectivity is known to be a factor influencing cognitive impairment, the neuropathological mechanisms underlying the cognitive impairment caused by type 2 diabetes mellitus (T2DM) remain unclear. To characterize the neural mechanisms underlying T2DM-related brain damage, we explored the altered functional architecture patterns in different cognitive states in T2DM patients. Thirty-seven T2DM patients with normal cognitive function (DMCN), 40 T2DM patients with mild cognitive impairment (MCI) (DMCI), and 40 healthy controls underwent neuropsychological assessments and resting-state functional MRI examinations. Functional connectivity density (FCD) analysis was performed, and the relationship between abnormal FCD and clinical/cognitive variables was assessed. The regions showing abnormal FCD in T2DM patients were mainly located in the temporal lobe and cerebellum, but the abnormal functional architecture was more extensive in DMCI patients. Moreover, in comparison with the DMCN group, DMCI patients showed reduced long-range FCD in the left superior temporal gyrus (STG), which was correlated with the Rey auditory verbal learning test score in all T2DM patients. Thus, DMCI patients show functional architecture abnormalities in more brain regions involved in higher-level cognitive function (executive function and auditory memory function), and the left STG may be involved in the neuropathology of auditory memory in T2DM patients. These findings provide some new insights into understanding the neural mechanisms underlying T2DM-related cognitive impairment.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province of China

Shaanxi Provincial People’s Hospital Technological Development Incubation Foundation of China

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3