A Pilot Study: Extraction of a Neural Network and Feature Extraction of Generation and Reduction Mechanisms Due to Acute Stress

Author:

Choi Mi-Hyun1

Affiliation:

1. Biomedical Engineering, Research Institute of Biomedical Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, Chungju 27478, Republic of Korea

Abstract

This study aimed to compare the functional connectivity (FC) assessed during acute stress and recovery after stress using the Montreal imaging stress task (MIST) in adults in their 20s and 30s with Korean Perceived Stress Scale (PSS) scores between 15 and 19 points inclusive. Four seed networks, including the salience network, default mode network, frontoparietal network, and dorsal attention network, were specified to extract the results. Healthy male and female adults who were required to make an effort to relieve stress were exposed to acute stress tasks, and the most common FCs were observed in the salience network, default mode network, and frontoparietal network during the stress and recovery phases. Compared to the stress phase, the increased effect size was significantly different in the recovery phase. In the stress phase, characteristically common FCs were observed in the dorsal attention network. During the recovery period, Salience network (Anterior Insula, R) and Salience network (anterior cingulate cortex, ACC)/Salience network (rostral prefrontal cortex, RPFC), Salience network (AInsula) and Salience network (RPFC), and Default Mode network (posterior cingulate) cortex, PCC) and fronto-parietal network (lateral prefrontal cortex, LPFC) FC were characteristically observed.

Publisher

MDPI AG

Subject

General Neuroscience

Reference35 articles.

1. (2017). Stress: The Different Kinds of Stress, American Psychological Association.

2. (2021). Chronic Stress, American Institute of Stress.

3. (2021). Stress, Mayo Clinic.

4. (2021). Physical Stress, American Heart Association.

5. The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain;Dedovic;J Psychiatry Neurosci.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3