Mental Workload Classification and Tasks Detection in Multitasking: Deep Learning Insights from EEG Study

Author:

Pušica Miloš12ORCID,Kartali Aneta3,Bojović Luka4,Gligorijević Ivan1,Jovanović Jelena1,Leva Maria Chiara2ORCID,Mijović Bogdan1

Affiliation:

1. mBrainTrain LLC, 11000 Belgrade, Serbia

2. School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland

3. Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia

4. Microsoft Development Center Serbia, 11000 Belgrade, Serbia

Abstract

While the term task load (TL) refers to external task demands, the amount of work, or the number of tasks to be performed, mental workload (MWL) refers to the individual’s effort, mental capacity, or cognitive resources utilized while performing a task. MWL in multitasking scenarios is often closely linked with the quantity of tasks a person is handling within a given timeframe. In this study, we challenge this hypothesis from the perspective of electroencephalography (EEG) using a deep learning approach. We conducted an EEG experiment with 50 participants performing NASA Multi-Attribute Task Battery II (MATB-II) under 4 different task load levels. We designed a convolutional neural network (CNN) to help with two distinct classification tasks. In one setting, the CNN was used to classify EEG segments based on their task load level. In another setting, the same CNN architecture was trained again to detect the presence of individual MATB-II subtasks. Results show that, while the model successfully learns to detect whether a particular subtask is active in a given segment (i.e., to differentiate between different subtasks-related EEG patterns), it struggles to differentiate between the two highest levels of task load (i.e., to distinguish MWL-related EEG patterns). We speculate that the challenge comes from two factors: first, the experiment was designed in a way that these two highest levels differed only in the quantity of work within a given timeframe; and second, the participants’ effective adaptation to increased task demands, as evidenced by low error rates. Consequently, this indicates that under such conditions in multitasking, EEG may not reflect distinct enough patterns to differentiate higher levels of task load.

Funder

European Commission

HORIZON 2020 Marie Skłodowska-Curie International Training Network Collaborative Intelligence for Safety Critical Systems

Serbian Innovation Fund project StayAlert

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3