Using Electroencephalogram-Extracted Nonlinear Complexity and Wavelet-Extracted Power Rhythm Features during the Performance of Demanding Cognitive Tasks (Aristotle’s Syllogisms) in Optimally Classifying Patients with Anorexia Nervosa

Author:

Karavia Anna1,Papaioannou Anastasia23,Michopoulos Ioannis1,Papageorgiou Panos C.4ORCID,Papaioannou George5,Gonidakis Fragiskos2ORCID,Papageorgiou Charalabos C.23

Affiliation:

1. Eating Disorder Unit, 2nd Department of Psychiatry, Medical School, National & Kapodistrian University of Athens, ‘Attikon’ University Hospital, 1 Rimini St., 12462 Athens, Greece

2. 1st Department of Psychiatry, Medical School, National & Kapodistrian University of Athens, Eginition Hospital, 74 Vas. Sofias Ave., 11528 Athens, Greece

3. Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Soranou tou Efesiou 2, Papagou, 11527 Athens, Greece

4. Department of Electrical and Computer Engineering, University of Patras, 26504 Rion-Patras, Greece

5. Center for Research of Nonlinear Systems (CRANS), Department of Mathematics, University of Patras, 26500 Rion-Patras, Greece

Abstract

Anorexia nervosa is associated with impaired cognitive flexibility and central coherence, i.e., the ability to provide an overview of complex information. Therefore, the aim of the present study was to evaluate EEG features elicited from patients with anorexia nervosa and healthy controls during mental tasks (valid and invalid Aristotelian syllogisms and paradoxes). Particularly, we examined the combination of the most significant syllogisms with selected features (relative power of the time–frequency domain and wavelet-estimated EEG-specific waves, Higuchi fractal dimension (HFD), and information-oriented approximate entropy (AppEn)). We found that alpha, beta, gamma, theta waves, and AppEn are the most suitable measures, which, when combined with specific syllogisms, form a powerful tool for efficiently classifying healthy subjects and patients with AN. We assessed the performance of triadic combinations of “feature–classifier–syllogism” via machine learning techniques in correctly classifying new subjects in these two groups. The following triads attain the best classifications: (a) “AppEn-invalid-ensemble BT classifier” (accuracy 83.3%), (b) “Higuchi FD-valid-linear discriminant” (accuracy 75%), (c) “alpha amplitude-valid-SVM” (accuracy 83.3%), (d) “alpha RP-paradox-ensemble BT” (accuracy 85%), (e) “beta RP-valid-ensemble” (accuracy 85%), (f) “gamma RP-valid-SVM” (accuracy 85%), and (g) “theta RP-valid-KNN” (accuracy 80%). Our findings suggest that anorexia nervosa has a specific information-processing style across reasoning tasks in the brain as measured via EEG activity. Our findings also contribute to further supporting the view that entropy-oriented, i.e., information-based features (the AppEn measure used in this study) are promising diagnostic tools (biomarkers) in clinical applications related to medical classification problems. Furthermore, the main EEG-specific frequency waves are extremely enhanced and become powerful classification tools when combined with Aristotle’s syllogisms.

Funder

Regional Governor of Attica

Athanasios & Marina Martinou Foundation (AMMF)-nonprofit civil company AEGEAS

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3