Protective Effects of Sodium Para-Aminosalicylic Acid on Lead and Cadmium Co-Exposure in SH-SY5Y Cells

Author:

Peng Jian-Chao12,Deng Yue123,Song Han-Xiao12ORCID,Fang Yuan-Yuan12,Gan Cui-Liu12,Lin Jun-Jie12,Luo Jing-Jing12,Zheng Xiao-Wei12,Aschner Michael4ORCID,Jiang Yue-Ming12

Affiliation:

1. Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China

2. Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China

3. The People’s Hospital of Kaizhou District, Chongqing 405400, China

4. Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA

Abstract

Background: Combined exposure to lead and cadmium is common in occupational environments. However, the effects of co-exposure to Pb-Cd on neurotoxicity have not been fully clarified. Sodium para-aminosalicylic acid (PAS-Na) has previously been shown to protect neurons from Pb-induced toxicity. This study aimed to investigate the beneficial effect of PAS-Na against co-exposure to Pb-Cd-induced neurodegeneration in SH-SY5Y cells. Methods: The MTT assay was used to detect the effects of Pb and Cd alone, or in combination, on SH-SY5Y cell survival. The effects of Pb and Cd alone or in combination on oxidative stress were assessed by reactive oxygen species (ROS) level. Nrf2, the master switch for antioxidant responses, was detected by immunofluorescence. Protein expression levels of PI3K, Akt, p-Akt, Nrf2 and HO-1 were determined by Western blot analysis. Results: MTT assay results established that the survival rate of SH-SY5Y cells was not significantly affected by exposure to 1 μmol/L lead, 0.25 μmol/L cadmium, and 1-fold Pb-Cd mixture (1 μmol/L Pb + 0.25 μmol/L Cd), while 10-fold Pb-Cd combined exposure (10 μmol/L Pb + 2.5 μmol/L Cd) significantly reduced the survival rate of SH-SY5Y cells. Combined Pb-Cd exposure significantly increased intracellular ROS levels, and N-Acetyl-L-cysteine (NAC) treatment in the 10 μmol/L Pb + 2.5 μmol/L Cd group significantly decreased ROS expression levels, attenuating the levels of oxidative stress. Protein expression of PI3K and p-Akt significantly decreased in the 10 μmol/L Pb + 2.5 μmol/L Cd group, while the expression of PI3K and p-Akt protein increased after PAS-Na intervention. Immunofluorescence analysis showed that levels of Nrf2 in the nucleus increased in the 10 μmol/L Pb + 2.5 μmol/L Cd group, along with Nrf2 protein levels, suggesting that Nrf2 was translocated from the cytoplasm into the nucleus upon combined Pb-Cd exposure. In addition, HO-1 protein expression level, a downstream gene product of Nrf2, was increased. In response to NAC intervention, HO-1 protein expression levels significantly decreased. PAS-Na had the same intervention effect as NAC. Conclusion: Combined exposure to Pb-Cd induced oxidative stress and cytotoxicity in SH-SY5Y cells. PAS-Na displayed antagonistic effects on neurodegenerative changes induced by combined Pb-Cd exposure; hence, it may afford a novel treatment modality for exposure to these metals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3