Subject-Independent EEG Classification of Motor Imagery Based on Dual-Branch Feature Fusion

Author:

Dong Yanqing1,Wen Xin1,Gao Fang1,Gao Chengxin1,Cao Ruochen1,Xiang Jie2ORCID,Cao Rui1ORCID

Affiliation:

1. School of Software, Taiyuan University of Technology, Taiyuan 030024, China

2. College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China

Abstract

A brain computer interface (BCI) system helps people with motor dysfunction interact with the external environment. With the advancement of technology, BCI systems have been applied in practice, but their practicability and usability are still greatly challenged. A large amount of calibration time is often required before BCI systems are used, which can consume the patient’s energy and easily lead to anxiety. This paper proposes a novel motion-assisted method based on a novel dual-branch multiscale auto encoder network (MSAENet) to decode human brain motion imagery intentions, while introducing a central loss function to compensate for the shortcomings of traditional classifiers that only consider inter-class differences and ignore intra-class coupling. The effectiveness of the method is validated on three datasets, namely BCIIV2a, SMR-BCI and OpenBMI, to achieve zero calibration of the MI-BCI system. The results show that our proposed network displays good results on all three datasets. In the case of subject-independence, the MSAENet outperformed the other four comparison methods on the BCIIV2a and SMR-BCI datasets, while achieving F1_score values as high as 69.34% on the OpenBMI dataset. Our method maintains better classification accuracy with a small number of parameters and short prediction times, and the method achieves zero calibration of the MI-BCI system.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

General Neuroscience

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3