Prolonged Longitudinal Transcutaneous Auricular Vagus Nerve Stimulation Effect on Striatal Functional Connectivity in Patients with Major Depressive Disorder

Author:

Zhang ShuaiORCID,He Jia-Kai,Zhong Gang-Liang,Wang Yu,Zhao Ya-Nan,Wang LeiORCID,Li Shao-Yuan,Xiao Xue,Yang Zheng-Yi,Zhao Bin,Zhang Jin-Ling,Jiang Tian-ZiORCID,Fang Ji-Liang,Rong Pei-Jing

Abstract

Background: Transcutaneous auricular vagus nerve stimulation (taVNS) is effective for treating major depressive disorder (MDD). We aimed to explore the modulating effect of prolonged longitudinal taVNS on the striatal subregions’ functional connectivity (FC) in MDD patients. Methods: Sixteen MDD patients were enrolled and treated with taVNS for 8 weeks. Sixteen healthy control subjects (HCs) were recruited without intervention. The resting-state FC (rsFC) based on striatal subregion seed points and the Hamilton Depression Scale (HAMD) were evaluated in the MDD patients and HCs at baseline and after 8 weeks. A two-way ANCOVA test was performed on each rsFC metric to obtain the (group-by-time) interactions. Results: The rsFC values between the left ventral caudate (vCa) and right ventral prefrontal cortex (vPFC), and between the right nucleus accumbens (NAc) and right dorsal medial prefrontal cortex (dmPFC) and ventrolateral prefrontal cortex (vlPFC) are lower in the MDD patients compared to the HCs at baseline, and increase following taVNS; the rsFC values between the left vCa and right, superior occipital gyrus (SOG), and between the left dorsal caudate (dCa) and right cuneus are higher in MDD patients and decrease following taVNS. Conclusions: Prolonged longitudinal taVNS can modulate the striatum rsFC with the prefrontal cortex, occipital cortex, temporal cortex, and intra-striatum, and these changes partly underlie any symptomatic improvements. The results indicate that prolonged longitudinal taVNS may produce beneficial treatment effects by modulating the cortical striatum circuitry in patients with MDD.

Funder

National Key Research and Development Program

the China Academy of Chinese Medical Sciences Innovation Fund

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3