Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence

Author:

Vielee Samuel T.12,Wise John P.12

Affiliation:

1. Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA

2. Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA

Abstract

Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3–4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the “Hallmarks of Aging”, nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence—a permanent growth arrest in cells—is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis.

Funder

NIEHS

Publisher

MDPI AG

Subject

General Neuroscience

Reference224 articles.

1. United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019, Volume II: Demographic Profiles.

2. Peculiarities of Geriatric Psychiatry: A Focus on Aging and Depression;Laks;CNS Neurosci. Ther.,2010

3. The intersection between toxicology and aging research: A toxic aging coin perspective;Wise;Front. Aging,2022

4. Developmental Origins of Health and Disease: Brief History of the Approach and Current Focus on Epigenetic Mechanisms;Wadhwa;Semin. Reprod. Med.,2009

5. National Institute of Environmental Health Sciences (2023, February 07). Theme One: Advancing Environmental Health Sciences, Available online: www.niehs.nih.gov/about/strategicplan/2018-2023_theme1/index.cfm.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3