Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia

Author:

Xiang Jie1ORCID,Sun Yumeng1,Wu Xubin1,Guo Yuxiang2,Xue Jiayue1,Niu Yan1,Cui Xiaohong1

Affiliation:

1. College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China

2. School of Software, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Schizophrenia (SZ) is a complex psychiatric disorder with unclear etiology and pathological features. Neuroscientists are increasingly proposing that schizophrenia is an abnormality in the dynamic organization of brain networks. Previous studies have found that the dynamic brain networks of people with SZ are abnormal in both space and time. However, little is known about the interactions and overlaps between hubs of the brain underlying spatiotemporal dynamics. In this study, we aimed to investigate different patterns of spatial and temporal overlap of hubs between SZ patients and healthy individuals. Specifically, we obtained resting-state functional magnetic resonance imaging data from the public dataset for 43 SZ patients and 49 healthy individuals. We derived a representation of time-varying functional connectivity using the Jackknife Correlation (JC) method. We employed the Betweenness Centrality (BC) method to identify the hubs of the brain’s functional connectivity network. We then applied measures of temporal overlap, spatial overlap, and hierarchical clustering to investigate differences in the organization of brain hubs between SZ patients and healthy controls. Our findings suggest significant differences between SZ patients and healthy controls at the whole-brain and subnetwork levels. Furthermore, spatial overlap and hierarchical clustering analysis showed that quasi-periodic patterns were disrupted in SZ patients. Analyses of temporal overlap revealed abnormal pairwise engagement preferences in the hubs of SZ patients. These results provide new insights into the dynamic characteristics of the network organization of the SZ brain.

Funder

National Natural Science Functional of China

China Postdoctoral Science Foundation

Shenzhen Basic Research Project

Shanxi Province Application Basic Research Plan

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3