Abnormal and Changing Information Interaction in Adults with Attention-Deficit/Hyperactivity Disorder Based on Network Motifs

Author:

Wu Xubin1,Guo Yuxiang2,Xue Jiayue1,Dong Yanqing1,Sun Yumeng1,Wang Bin1,Xiang Jie1ORCID,Liu Yi3

Affiliation:

1. College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China

2. School of Software, Taiyuan University of Technology, Taiyuan 030024, China

3. Department of Anesthesiology, Shanxi Province Cancer Hospital, Taiyuan 030013, China

Abstract

Network motif analysis approaches provide insights into the complexity of the brain’s functional network. In recent years, attention-deficit/hyperactivity disorder (ADHD) has been reported to result in abnormal information interactions in macro- and micro-scale functional networks. However, most existing studies remain limited due to potentially ignoring meso-scale topology information. To address this gap, we aimed to investigate functional motif patterns in ADHD to unravel the underlying information flow and analyze motif-based node roles to characterize the different information interaction methods for identifying the abnormal and changing lesion sites of ADHD. The results showed that the interaction functions of the right hippocampus and the right amygdala were significantly increased, which could lead patients to develop mood disorders. The information interaction of the bilateral thalamus changed, influencing and modifying behavioral results. Notably, the capability of receiving information in the left inferior temporal and the right lingual gyrus decreased, which may cause difficulties for patients in processing visual information in a timely manner, resulting in inattention. This study revealed abnormal and changing information interactions based on network motifs, providing important evidence for understanding information interactions at the meso-scale level in ADHD patients.

Funder

National Natural Science Foundation of China

Shanxi Province Free Exploration Basic Research Project

Shanxi Province Basic Research Program (Free Exploration) Project

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3