Alteration of Metabolic Profiles during the Progression of Alzheimer’s Disease

Author:

Yu Wuhan1,Chen Lihua1,Li Xuebing1,Han Tingli23,Yang Yang4,Hu Cheng1,Yu Weihua5,Lü Yang1ORCID

Affiliation:

1. Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

2. Department of Obsetric and Gyncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

3. Liggins Institute, The University of Auckland, Auckland 1023, New Zealand

4. Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400716, China

5. Institutes of Neuroscience, Chongqing Medical University, Chongqing 400016, China

Abstract

(1) Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that threatens the population health of older adults. However, the mechanisms of the altered metabolism involved in AD pathology are poorly understood. The aim of the study was to identify the potential biomarkers of AD and discover the metabolomic changes produced during the progression of the disease. (2) Methods: Gas chromatography–mass spectrometry (GC–MS) was used to measure the concentrations of the serum metabolites in a cohort of subjects with AD (n = 88) and a cognitively normal control (CN) group (n = 85). The patients were classified as very mild (n = 25), mild (n = 27), moderate (n = 25), and severe (n = 11). The serum metabolic profiles were analyzed using multivariate and univariate approaches. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied to identify the potential biomarkers of AD. Biofunctional enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. (3) Results: Our results revealed considerable separation between the AD and CN groups. Six metabolites were identified as potential biomarkers of AD (AUC > 0.85), and the diagnostic model of three metabolites could predict the risk of AD with high accuracy (AUC = 0.984). The metabolic enrichment analysis revealed that carbohydrate metabolism deficiency and the disturbance of amino acid, fatty acid, and lipid metabolism were involved in AD progression. Especially, the pathway analysis highlighted that l−glutamate participated in four crucial nervous system pathways (including the GABAergic synapse, the glutamatergic synapse, retrograde endocannabinoid signaling, and the synaptic vesicle cycle). (4) Conclusions: Carbohydrate metabolism deficiency and amino acid dysregulation, fatty acid, and lipid metabolism disorders were pivotal events in AD progression. Our study may provide novel insights into the role of metabolic disorders in AD pathogenesis and identify new markers for AD diagnosis.

Funder

National Key R&D Program of China

Key Project of Technological Innovation and Application Development of Chongqing Science & Technology Bureau

Science Innovation Programs Led by the Academicians in Chongqing

Intelligent Medicine Program of Chongqing Medical University

Chongqing Medical University doctoral and postgraduate innovation project

Science and Technology Research Program Of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3