Applying Deep Learning on a Few EEG Electrodes during Resting State Reveals Depressive States: A Data Driven Study

Author:

Jan DamiánORCID,de Vega ManuelORCID,López-Pigüi Joana,Padrón IvánORCID

Abstract

The growing number of depressive people and the overload in primary care services make it necessary to identify depressive states with easily accessible biomarkers such as mobile electroencephalography (EEG). Some studies have addressed this issue by collecting and analyzing EEG resting state in a search of appropriate features and classification methods. Traditionally, EEG resting state classification methods for depression were mainly based on linear or a combination of linear and non-linear features. We hypothesize that participants with ongoing depressive states differ from controls in complex patterns of brain dynamics that can be captured in EEG resting state data, using only nonlinear measures on a few electrodes, making it possible to develop cheap and wearable devices that could be even monitored through smartphones. To validate such a perspective, a resting-state EEG study was conducted with 50 participants, half with depressive state (DEP) and half controls (CTL). A data-driven approach was applied to select the most appropriate time window and electrodes for the EEG analyses, as suggested by Giacometti, as well as the most efficient nonlinear features and classifiers, to distinguish between CTL and DEP participants. Nonlinear features showing temporo-spatial and spectral complexity were selected. The results confirmed that computing nonlinear features from a few selected electrodes in a 15 s time window are sufficient to classify DEP and CTL participants accurately. Finally, after training and testing internally the classifier, the trained machine was applied to EEG resting state data (CTL and DEP) from a publicly available database, validating the capacity of generalization of the classifier with data from different equipment, population, and environment obtaining an accuracy near 100%.

Funder

Agustín de Betancourt Program

Canarian Agency for Research, Innovation and the Information Society and the European Regional Development Fund to Manuel de Vega

Publisher

MDPI AG

Subject

General Neuroscience

Reference33 articles.

1. American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association.

2. World Health Organization (2022, October 26). Mental Health, Available online: https://www.who.int/health-topics/mental-health.

3. James, S.L., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., and GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018). Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet, Available online: https://linkinghub.elsevier.com/retrieve/pii/S0140673618322797.

4. Implicit Bias and Mental Health Professionals: Priorities and Directions for Research;Psychiatr. Serv.,2018

5. Bias in Mental Health Assessment and Intervention: Theory and Evidence;Am. J. Public Health,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3