Neuroplasticity Elicited by Modified Pharyngeal Electrical Stimulation: A Pilot Study

Author:

Zhang XueORCID,Wang XiaoluORCID,Liang Yunxiao,Shan Yilong,Song Rong,Li Xin,Dou Zulin,Wen HongmeiORCID

Abstract

Modified pharyngeal electrical stimulation (mPES) is a novel therapeutic method for patients with neurogenic dysphagia and tracheostomy. However, the underlying neural mechanisms are still unclear. This study aims to investigate the impact of mPES on swallowing-related neural networks and involuntary swallowing frequency using functional near-infrared spectroscopy (fNIRS). 20 healthy volunteers participated in this study, including two separate experimental paradigms. Experiment 1: Immediate effect observation, 20 participants (10 female; mean age 47.65 ± 10.48) were delivered with real and sham mPES in random order for 8 repetitions. fNIRS signals were collected during the whole period of Experiments 1. Swallowing frequency was assessed during sham/real mPES. Experiment 2: Prolonged effect observation, 7 out of the 20 participants (4 female; mean age 49.71 ± 6.26) completed real mPES for 5 sessions (1 session/day). 13 of the 20 participants withdrew for personal reasons. Hemodynamic changes were recorded by fNIRS on day 1 and 5. Results show that mPES evoked cortical activation over a distributed network in bilateral primary somatosensory, primary motor, somatosensory association cortex, pre-motor and supplementary motor area, dorsolateral prefrontal cortex, Broca’s area, and supramarginal gyrus part of Wernicke’s area. Meanwhile, the increased frequency of involuntary swallowing was associated with decreased frontopolar activation (frontopolar cortex: Channel 6, p = 0.024, r = −0.529; Channel 23, p = 0.019, r = −0.545). Furthermore, after five days of mPES, decreased cortical activations were observed in the right dorsolateral prefrontal and supramarginal gyrus part of Wernicke’s area, and left frontopolar and M1 areas. Overall, these results might suggest that mPES could elicit changes in neuroplasticity that could reorganize the swallowing-related neural network and increase involuntary swallow frequency.

Funder

the National Key Research and Development Project

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province of China

Clinical Research Special Fund Project of the Third Affiliated Hospital of Sun Yat-sen University

Publisher

MDPI AG

Subject

General Neuroscience

Reference64 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3