Investigating White Matter Abnormalities Associated with Schizophrenia Using Deep Learning Model and Voxel-Based Morphometry

Author:

Goel Tripti1ORCID,Varaprasad Sirigineedi A.1,Tanveer M.2ORCID,Pilli Raveendra1

Affiliation:

1. Biomedical Imaging Lab, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India

2. Department of Mathematics, Indian Institute of Technology Indore, Simrol 453552, Madhya Pradesh, India

Abstract

Schizophrenia (SCZ) is a devastating mental condition with significant negative consequences for patients, making correct and prompt diagnosis crucial. The purpose of this study is to use structural magnetic resonance image (MRI) to better classify individuals with SCZ from control normals (CN) and to locate a region of the brain that represents abnormalities associated with SCZ. Deep learning (DL), which is based on the nervous system, could be a very useful tool for doctors to accurately predict, diagnose, and treat SCZ. Gray Matter (GM), Cerebrospinal Fluid (CSF), and White Matter (WM) brain regions are extracted from 99 MRI images obtained from the open-source OpenNeuro database to demonstrate SCZ’s regional relationship. In this paper, we use a pretrained ResNet-50 deep network to extract features from MRI images and an ensemble deep random vector functional link (edRVFL) network to classify those features. By examining the results obtained, the edRVFL deep model provides the highest classification accuracy of 96.5% with WM and is identified as the best-performing algorithm compared to the traditional algorithms. Furthermore, we examined the GM, WM, and CSF tissue volumes in CN subjects and SCZ patients using voxel-based morphometry (VBM), and the results show 1363 significant voxels, 6.90 T-value, and 6.21 Z-value in the WM region of SCZ patients. In SCZ patients, WM is most closely linked to structural alterations, as evidenced by VBM analysis and the DL model.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3