Metabolite Variations in the Hippocampus and Corpus Callosum of Patients with Mild Cognitive Impairment Using Magnetic Resonance Spectroscopy with Three-Dimensional Chemical Shift Images

Author:

Kau Yen-Lon12,Lin I-Hung345ORCID,Juang Chi-Long2,Chang Chao-Kai36,Ho Wen-Hsiang1,Wen Hsiao-Chuan7

Affiliation:

1. Department of Medical Imaging, Camillian St. Mary’s Hospital, Luodong, Yilan 265502, Taiwan

2. Department of Medical Imaging and Radiological Sciences, Yuanpei University, Hsinchu 30015, Taiwan

3. Nobel Eye Institute, Taipei 100008, Taiwan

4. Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan

5. Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan

6. Department of Optometry, Yuanpei University, Hsinchu 30015, Taiwan

7. Department of Pet Healthcare, Yuanpei University, Hsinchu 300, Taiwan

Abstract

This study compared the metabolites in the brain regions of hippocampus and corpus callosum between patients with mild cognitive impairment (MCI) and healthy controls using no-radiation and high-sensitivity magnetic resonance spectroscopy (MRS) with three-dimensional chemical shift images (3D-CSI). Twenty volunteers (seven patients with MCI and 13 healthy controls) aged 50–71 years were recruited for this prospective study. MRS with 3D-CSI images of a variety of metabolites was collected from the hippocampus and corpus callosum. Sex and weight showed no significant differences between the two groups. The metabolite levels in the hippocampus and corpus callosum of the MCI group were generally lower than in those of the healthy group, especially for creatine (p < 0.001 in the hippocampus and p = 0.020 in the corpus callosum) and N-acetyl aspartate/creatine (p < 0.001 in the hippocampus and p = 0.020 in the corpus callosum); however, choline/creatine showed a significant difference (p < 0.001) only in the hippocampus, and myo-inositol/creatine showed a significant difference (p < 0.001) only in the corpus callosum. Our study demonstrated that MRS with 3D-CSI can be used to measure these metabolite levels to determine the differences between patients with MCI and healthy individuals. This would aid early diagnosis of MCI in clinical practice, and patients could receive prompt intervention to improve their quality of life.

Funder

industry-academia cooperation of Yuanpei University

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3