Auto-Evaluation Model for the Prediction of Building Energy Consumption That Combines Modified Kalman Filtering and Long Short-Term Memory

Author:

Yang Fan1ORCID,Mao Qian2

Affiliation:

1. Electrical and Electronic Engineering Department, The Hong Kong Polytechnic University, Hong Kong, China

2. School of Design, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

As the world grapples with the challenges posed by climate change and depleting energy resources, achieving sustainability in the construction and operation of buildings has become a paramount concern. The construction and operation of buildings account for a substantial portion of global energy consumption and carbon emissions. Hence, the accurate prediction of building energy consumption is indispensable for reducing energy waste, minimizing greenhouse gas emissions, and fostering sustainable urban development. The aspiration to achieve predicted outcomes with remarkable accuracy has emerged as a pivotal objective, coinciding with the burgeoning popularity of deep learning techniques. This paper presents an auto-evaluation model for building energy consumption prediction via Long Short-Term Memory with modified Kalman filtering (LSTM-MKF). Results gleaned from data validation activities evince a notable transformation—a reduction of the maximal prediction error from an initial 83% to a markedly ameliorated 24% through the intervention of the proposed model. The LSTM-MKF model, a pioneering contribution within this paper, clearly exhibits a distinct advantage over the other models in terms of predictive accuracy, as underscored by its superior performance in all three key metrics, including mean absolute error, root mean square error, and mean square error. The model presents excellent potential as a valuable tool for enhancing the precision of predictions of building energy consumption, a pivotal aspect in energy efficiency, smart city development, and the formulation of informed energy policy.

Funder

Hong Kong Polytechnic University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3