Author:
Peletiri Suoton,Rahmanian Nejat,Mujtaba Iqbal
Abstract
There is a need to accurately design pipelines to meet the expected increase in the construction of carbon dioxide (CO2) pipelines after the signing of the Paris Climate Agreement. CO2 pipelines are usually designed with the assumption of a pure CO2 fluid, even though it usually contains impurities, which affect the critical pressure, critical temperature, phase behaviour, and pressure and temperature changes in the pipeline. The design of CO2 pipelines and the calculation of process parameters and fluid properties is not quite accurate with the assumption of pure CO2 fluids. This paper reviews the design of rich CO2 pipelines including pipeline route selection, length and right of way, fluid flow rates and velocities, need for single point-to-point or trunk pipelines, pipeline operating pressures and temperatures, pipeline wall thickness, fluid stream composition, fluid phases, and pipeline diameter and pressure drop calculations. The performance of a hypothetical pipeline was simulated using gPROMS (ver. 4.2.0) and Aspen HYSYS (ver.10.1) and the results of both software were compared to validate equations. Pressure loss due to fluid acceleration was ignored in the development of the diameter/pressure drop equations. Work is ongoing to incorporate fluid acceleration effect and the effects of impurities to improve the current models.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献