Synergistic Effects in a ZnO Powder-Based Coating Sequentially Irradiated with Protons, Electrons, and Solar Spectrum Quanta

Author:

Mikhailov Mikhail M.,Yuryev Semyon A.,Lapin Alexey N.,Karanskiy Vadim V.

Abstract

The authors investigated the changes in diffuse reflectance spectra (ρλ) within 0.32–2.1 μm and integral absorption coefficient (as) of solar irradiation for a zinc oxide powder-based coating. The latter was consequently irradiated with protons (E = 3 keV, F ≤ 1 × 1016 cm−2), solar spectrum quanta (5 eq. of solar irradiation, 1 h), electrons (E = 30 keV, F = 1 × 1016 cm−2), and—repetitively—solar spectrum quanta (5 eq. of solar irradiation, 1 h). Following the irradiation procedure, the decrease in absorption coefficient varied from 0.044 to 0.036 and from 0.062 to 0.04, respectively. Additionally, it was shown that the solar spectrum quanta did not significantly affect the coating pre-irradiated with protons or electrons and did not change the value of induced absorption in the visible region (the latter being caused by the absorption of intrinsic point defects of the zinc oxide crystal lattice). The absorption coefficient degradation decreased under solar spectrum quanta irradiation, which was determined by the decrease in the concentration of free electrons that absorbed in the near-infrared (near-IR) region. ρλ spectra were measured in high vacuum in situ. A post-irradiation transfer of a coating into the atmosphere leads not only to the complete recovery of its reflectance, but also to partial translucence in comparison with the non-irradiated state.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference23 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3