NADPH Oxidase Overactivity Underlies Telomere Shortening in Human Atherosclerosis

Author:

Pejenaute Álvaro,Cortés Adriana,Marqués Javier,Montero LauraORCID,Beloqui Óscar,Fortuño Ana,Martí AmeliaORCID,Orbe JosuneORCID,Zalba GuillermoORCID

Abstract

Telomere shortening and oxidative stress are involved in the pathogenesis of atherosclerosis. Different studies have shown that phagocytic NADPH oxidase is associated with this disease. This study aimed to investigate the association between phagocytic NADPH oxidase and telomere shortening in human atherosclerosis. To assess this potential association, telomere length and phagocytic NADPH oxidase activity were determined by PCR and chemiluminescence, respectively, in a population of asymptomatic subjects free of overt clinical atherosclerosis. We also measured serum 8-hydroxy-2-deoxyguanosine (8-OHdG) levels (an index of oxidative stress) and carotid intima-media thickness (IMT), a surrogate marker of atherosclerosis. After adjusting them for age and sex, telomere length inversely correlated (p < 0.05) with NADPH oxidase-mediated superoxide production, with 8-OHdG values, and with carotid IMT. Interestingly, the asymptomatic subjects with plaques have a lower telomere length (p < 0.05), and higher values of plasma 8-OHdG and superoxide production (p < 0.05). These data were confirmed in a second population in which patients with coronary artery disease showed lower telomere length and higher 8-OHdG and superoxide production than the asymptomatic subjects. In both studies, NADPH oxidase-dependent superoxide production in phagocytic cells was only due to the specific expression of the Nox2 isoform. In conclusion, these findings suggest that phagocytic NADPH oxidase may be involved in oxidative stress-mediated telomere shortening, and that this axis may be critically involved in human atherosclerosis.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3