Efficient 2D-DOA Estimation Based on Triple Attention Mechanism for L-Shaped Array

Author:

Zhao Yonghong12,Fan Xiumei12,Liu Jisong1,Li Yuxing12ORCID,Yao Lyulong1,Wang Junlong1

Affiliation:

1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China

Abstract

Accurate direction-of-arrival (DOA) estimation is crucial to a variety of applications, including wireless communications, radar systems, and sensor arrays. In this work, we propose a novel deep convolutional neural network (DCN) called TADCN for 2D-DOA estimation using an L-shaped array. The network achieves high estimation performance through a triple attention mechanism (TAM). Specifically, the new architecture enables the network to capture the relationships across the channel, height, and width dimensions of the signal sample features, thereby enhancing the feature extraction capability and improving the resulting spatial spectrum. To this end, the spatial spectrum is processed by the proposed spectrum analyzer to yield high-precision DOA estimation results. An automatic angle matching method based on TADCN is employed for estimating the pairing between the estimated azimuth and elevation DOA sets. Furthermore, the overall efficiency is enhanced through the parallel processing of the angle estimation and matching networks. Simulation results demonstrate that the proposed algorithm outperforms traditional methods and deep learning-based approaches for various noise levels and snapshots while maintaining better estimation performance even in the presence of correlated signal sources.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3