Characteristic Evaluation and Finite Element Analysis of a New Glass Fiber Post Based on Bio-Derived Polybenzoxazine

Author:

Mora Phattarin1,Rimdusit Sarawut2ORCID,Jubsilp Chanchira1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand

2. Research Unit in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

A new type of glass fiber (GF)-reinforced bio-derived polybenzoxazine (GF/bio-derived PBz) composites suitable for dental post applications was developed. The study assessed the effects of different quantities of GF on the mechanical and thermal characteristics, thermal stability, and flame resistance of the composite samples. Additionally, the feasibility of using GF/bio-derived PBz composites for dental posts was analyzed through finite element analysis (FEA). The stress distribution in a tooth model repaired with the newly developed GF/bio-derived PBz composite posts under oblique loads was compared to models repaired with conventional glass fiber post and gold alloy post. The incorporation of GFs significantly enhanced the flexural properties, thermal stability, and flame resistance of the composite samples, while also reducing thermal expansion in a manner that closely matched that of dentin. The FEA of a tooth model repaired with a composite post derived from GF/bio-based PBz revealed a stress distribution pattern comparable to that of a tooth model repaired using a conventional glass fiber post. Considering the composite’s mechanical properties, thermal stability, flame resistance, and its suitability for dental fiber posts as demonstrated by the FEA, the GF/bio-derived PBz holds significant promise for use in dental fiber post applications.

Funder

Fundamental Fund 2022, Thailand Science Research and Innovation (TSRI) via Srinakharinwirot University

The National Research Council of Thailand (NRCT) and Srinakharinwirot University

Srinakharinwirot University Development

The National Research Council of Thailand (NRCT) and Chulalongkorn University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3