Effects of Phosphate and Arsenate on As Metabolism in Microcystis aeruginosa at Different Growth Phases

Author:

Zhang Ping12ORCID,Liu Jinxin12,Yang Fen1,Xie Shaowen3,Wei Chaoyang1ORCID

Affiliation:

1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Environmental and Chemical Engineering, Foshan University, Foshan 528011, China

Abstract

Arsenic (As) metabolism in freshwater algae at different growth phases has rarely been documented. To address this gap, this study was conducted to assess the intra- and extracellular As metabolism, along with speciation changes, in Microcystis aeruginosa across three growth phases. The treatment involved varying concentrations of As (0, 0.4, 0.6, 0.8 and 1 mg/L, in the form of arsenate, iAsV) under three phosphorus levels (0.02 mg/L as low, 0.1 mg/L as medium, and 0.5 mg/L as high P in the form of phosphate). The findings revealed that extracellular iAsV remained the dominant As species during the lag and exponential growth phases of M. aeruginosa in the growth media, while intracellular trivalent As (iAsIII) emerged as the pronounced species during the exponential growth phase, but also exhibited a significant negative correlation with the P levels. Moreover, elevated P levels had promoted the formation of intra- and extracellular dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in the exponential growth phase. During the stationary growth phase, intracellular iAsV was found to decrease with the increasing P levels. During the whole growth phases, P had consistently reduced algal As absorption levels. The significant promotion of algal As absorption in response to iAsV was observed only during the lag growth phase. The As bioaccumulation exhibited a correlational relationship with the algal reproduction. Both low and high P levels (0.02 and 0.5 mg/L) decreased the accumulation of As in algae cells during the exponential and stationary growth phases. The transformation and release rate of As were concomitantly influenced by P, and exhibited the same trends within the growth phase. These trends differed between the exponential and stationary growth phases, with an inhibitory effect being present during the former, while a promotional effect was observed during the latter. This study provides insight into potential As hazards in freshwater lakes with algae bloom.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3