Hyperspectral Ophthalmoscope Images for the Diagnosis of Diabetic Retinopathy Stage

Author:

Yao Hsin-Yu,Tseng Kuang-WenORCID,Nguyen Hong-Thai,Kuo Chie-Tong,Wang Hsiang-ChenORCID

Abstract

A methodology that applies hyperspectral imaging (HSI) on ophthalmoscope images to identify diabetic retinopathy (DR) stage is demonstrated. First, an algorithm for HSI image analysis is applied to the average reflectance spectra of simulated arteries and veins in ophthalmoscope images. Second, the average simulated spectra are categorized by using a principal component analysis (PCA) score plot. Third, Beer-Lambert law is applied to calculate vessel oxygen saturation in the ophthalmoscope images, and oxygenation maps are obtained. The average reflectance spectra and PCA results indicate that average reflectance changes with the deterioration of DR. The G-channel gradually decreases because of vascular disease, whereas the R-channel gradually increases with oxygen saturation in the vessels. As DR deteriorates, the oxygen utilization of retinal tissues gradually decreases, and thus oxygen saturation in the veins gradually increases. The sensitivity of diagnosis is based on the severity of retinopathy due to diabetes. Normal, background DR (BDR), pre-proliferative DR (PPDR), and proliferative DR (PDR) are arranged in order of 90.00%, 81.13%, 87.75%, and 93.75%, respectively; the accuracy is 90%, 86%, 86%, 90%, respectively. The F1-scores are 90% (Normal), 83.49% (BDR), 86.86% (PPDR), and 91.83% (PDR), and the accuracy rates are 95%, 91.5%, 93.5%, and 96%, respectively.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Medicine

Reference46 articles.

1. Reinventing Type 2 Diabetes

2. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030

3. Diabetic Retinopathy

4. Diabetic Retinopathy

5. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: Comparison of diabetes and galactosemia;Kern;Investig. Ophthalmol. Vis. Sci.,2000

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3