Abstract
Residue number system (RNS) is known for its parallel arithmetic and has been used in recent decades in various important applications, from digital signal processing and deep neural networks to cryptography and high-precision computation. However, comparison, sign identification, overflow detection, and division are still hard to implement in RNS. For such operations, most of the methods proposed in the literature only support small dynamic ranges (up to several tens of bits), so they are only suitable for low-precision applications. We recently proposed a method that supports arbitrary moduli sets with cryptographically sized dynamic ranges, up to several thousands of bits. The practical interest of our method compared to existing methods is that it relies only on very fast standard floating-point operations, so it is suitable for multiple-precision applications and can be efficiently implemented on many general-purpose platforms that support IEEE 754 arithmetic. In this paper, we make further improvements to this method and demonstrate that it can successfully be applied to implement efficient data-parallel primitives operating in the RNS domain, namely finding the maximum element of an array of RNS numbers on graphics processing units. Our experimental results on an NVIDIA RTX 2080 GPU show that for random residues and a 128-moduli set with 2048-bit dynamic range, the proposed implementation reduces the running time by a factor of 39 and the memory consumption by a factor of 13 compared to an implementation based on mixed-radix conversion.
Funder
Russian Science Foundation
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Reference28 articles.
1. Residue Number Systems: Theory and Applications;Ananda Mohan,2016
2. Residue Number Systems: Theory and Implementation;Omondi,2007
3. Residue Arithmetic and Its Application to Computer Technology;Szabo,1967
4. Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme
5. A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes;Bajard,2017
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献