Coarse-Grained Modeling of the SARS-CoV-2 Spike Glycoprotein by Physics-Informed Machine Learning

Author:

Liang David1,Zhang Ziji2ORCID,Rafailovich Miriam3,Simon Marcia4,Deng Yuefan2ORCID,Zhang Peng2ORCID

Affiliation:

1. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA

2. Departments of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11790, USA

3. Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA

4. Oral Biology and Pathology, Stony Brook University, Stony Brook, NY 11790, USA

Abstract

Coarse-grained (CG) modeling has defined a well-established approach to accessing greater space and time scales inaccessible to the computationally expensive all-atomic (AA) molecular dynamics (MD) simulations. Popular methods of CG follow a bottom-up architecture to match properties of fine-grained or experimental data whose development is a daunting challenge for requiring the derivation of a new set of parameters in potential calculation. We proposed a novel physics-informed machine learning (PIML) framework for a CG model and applied it, as a verification, for modeling the SARS-CoV-2 spike glycoprotein. The PIML in the proposed framework employs a force-matching scheme with which we determined the force-field parameters. Our PIML framework defines its trainable parameters as the CG force-field parameters and predicts the instantaneous forces on each CG bead, learning the force field parameters to best match the predicted forces with the reference forces. Using the learned interaction parameters, CGMD validation simulations reach the microsecond time scale with stability, at a simulation speed 40,000 times faster than the conventional AAMD. Compared with the traditional iterative approach, our framework matches the AA reference structure with better accuracy. The improved efficiency enhances the timeliness of research and development in producing long-term simulations of SARS-CoV-2 and opens avenues to help illuminate protein mechanisms and predict its environmental changes.

Funder

SUNY-IBM Consortium Award

Stony Brook University

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3