The Impact of Stochasticity and Its Control on a Model of the Inflammatory Response

Author:

Mavroudis Panteleimon D.1ORCID,Scheff Jeremy D.2,Doyle John C.3,Vodovotz Yoram45,Androulakis Ioannis P.26ORCID

Affiliation:

1. School of Pharmacy and Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14214, USA

2. Biomedical Engineering Department, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA

3. Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125, USA

4. Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA

5. Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA

6. Chemical & Biochemical Engineering Department, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA

Abstract

The dysregulation of inflammation, normally a self-limited response that initiates healing, is a critical component of many diseases. Treatment of inflammatory disease is hampered by an incomplete understanding of the complexities underlying the inflammatory response, motivating the application of systems and computational biology techniques in an effort to decipher this complexity and ultimately improve therapy. Many mathematical models of inflammation are based on systems of deterministic equations that do not account for the biological noise inherent at multiple scales, and consequently the effect of such noise in regulating inflammatory responses has not been studied widely. In this work, noise was added to a deterministic system of the inflammatory response in order to account for biological stochasticity. Our results demonstrate that the inflammatory response is highly dependent on the balance between the concentration of the pathogen and the level of biological noise introduced to the inflammatory network. In cases where the pro- and anti-inflammatory arms of the response do not mount the appropriate defense to the inflammatory stimulus, inflammation transitions to a different state compared to cases in which pro- and anti-inflammatory agents are elaborated adequately and in a timely manner. In this regard, our results show that noise can be both beneficial and detrimental for the inflammatory endpoint. By evaluating the parametric sensitivity of noise characteristics, we suggest that efficiency of inflammatory responses can be controlled. Interestingly, the time period on which parametric intervention can be introduced efficiently in the inflammatory system can be also adjusted by controlling noise. These findings represent a novel understanding of inflammatory systems dynamics and the potential role of stochasticity thereon.

Funder

National Institutes of Health

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3