Design of Inhibitors That Target the Menin–Mixed-Lineage Leukemia Interaction

Author:

Arthur Moses N.12,Bebla Kristeen34,Broni Emmanuel3ORCID,Ashley Carolyn3,Velazquez Miriam3,Hua Xianin5,Radhakrishnan Ravi678ORCID,Kwofie Samuel K.910ORCID,Miller Whelton A.347ORCID

Affiliation:

1. Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana

2. Biomedical Engineering Department, University of Rochester, Rochester, NY 14627, USA

3. Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA

4. Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA

5. Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

6. Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

7. Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

8. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

9. Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana

10. Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana

Abstract

The prognosis of mixed-lineage leukemia (MLL) has remained a significant health concern, especially for infants. The minimal treatments available for this aggressive type of leukemia has been an ongoing problem. Chromosomal translocations of the KMT2A gene are known as MLL, which expresses MLL fusion proteins. A protein called menin is an important oncogenic cofactor for these MLL fusion proteins, thus providing a new avenue for treatments against this subset of acute leukemias. In this study, we report results using the structure-based drug design (SBDD) approach to discover potential novel MLL-mediated leukemia inhibitors from natural products against menin. The three-dimensional (3D) protein model was derived from Protein Databank (Protein ID: 4GQ4), and EasyModeller 4.0 and I-TASSER were used to fix missing residues during rebuilding. Out of the ten protein models generated (five from EasyModeller and I-TASSER each), one model was selected. The selected model demonstrated the most reasonable quality and had 75.5% of residues in the most favored regions, 18.3% of residues in additionally allowed regions, 3.3% of residues in generously allowed regions, and 2.9% of residues in disallowed regions. A ligand library containing 25,131 ligands from a Chinese database was virtually screened using AutoDock Vina, in addition to three known menin inhibitors. The top 10 compounds including ZINC000103526876, ZINC000095913861, ZINC000095912705, ZINC000085530497, ZINC000095912718, ZINC000070451048, ZINC000085530488, ZINC000095912706, ZINC000103580868, and ZINC000103584057 had binding energies of −11.0, −10.7, −10.6, −10.2, −10.2, −9.9, −9.9, −9.9, −9.9, and −9.9 kcal/mol, respectively. To confirm the stability of the menin–ligand complexes and the binding mechanisms, molecular dynamics simulations including molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) computations were performed. The amino acid residues that were found to be potentially crucial in ligand binding included Phe243, Met283, Cys246, Tyr281, Ala247, Ser160, Asn287, Asp185, Ser183, Tyr328, Asn249, His186, Leu182, Ile248, and Pro250. MI-2-2 and PubChem CIDs 71777742 and 36294 were shown to possess anti-menin properties; thus, this justifies a need to experimentally determine the activity of the identified compounds. The compounds identified herein were found to have good pharmacological profiles and had negligible toxicity. Additionally, these compounds were predicted as antileukemic, antineoplastic, chemopreventive, and apoptotic agents. The 10 natural compounds can be further explored as potential novel agents for the effective treatment of MLL-mediated leukemia.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3