Abstract
This paper proposes a time-series deep-learning 3D Kinect camera scheme to classify the respiratory phases with a lung tumor and predict the lung tumor displacement. Specifically, the proposed scheme is driven by two time-series deep-learning algorithmic models: the respiratory-phase classification model and the regression-based prediction model. To assess the performance of the proposed scheme, the classification and prediction models were tested with four categories of datasets: patient-based datasets with regular and irregular breathing patterns; and pseudopatient-based datasets with regular and irregular breathing patterns. In this study, ‘pseudopatients’ refer to a dynamic thorax phantom with a lung tumor programmed with varying breathing patterns and breaths per minute. The total accuracy of the respiratory-phase classification model was 100%, 100%, 100%, and 92.44% for the four dataset categories, with a corresponding mean squared error (MSE), mean absolute error (MAE), and coefficient of determination (R2) of 1.2–1.6%, 0.65–0.8%, and 0.97–0.98, respectively. The results demonstrate that the time-series deep-learning classification and regression-based prediction models can classify the respiratory phases and predict the lung tumor displacement with high accuracy. Essentially, the novelty of this research lies in the use of a low-cost 3D Kinect camera with time-series deep-learning algorithms in the medical field to efficiently classify the respiratory phase and predict the lung tumor displacement.
Funder
NATIONAL RESEARCH COUNCIL OF THAILAND
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献