Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress

Author:

Kumar HarshORCID,Bhardwaj KanchanORCID,Nepovimova Eugenie,Kuča KamilORCID,Singh Dhanjal DaljeetORCID,Bhardwaj Sonali,Bhatia Shashi KantORCID,Verma RachnaORCID,Kumar DineshORCID

Abstract

Numerous abiotic stresses trigger the overproduction of reactive oxygen species (ROS) that are highly toxic and reactive. These ROS are known to cause damage to carbohydrates, DNA, lipids and proteins, and build the oxidative stress and results in the induction of various diseases. To resolve this issue, antioxidants molecules have gained significant attention to scavenge these free radicals and ROS. However, poor absorption ability, difficulty in crossing the cell membranes and degradation of these antioxidants during delivery are the few challenges associated with both natural and synthetic antioxidants that limit their bioavailability. Moreover, the use of nanoparticles as an antioxidant is overlooked, and is limited to a few nanomaterials. To address these issues, antioxidant functionalized nanoparticles derived from various biological origin have emerged as an important alternative, because of properties like biocompatibility, high stability and targeted delivery. Algae, bacteria, fungi, lichens and plants are known as the producers of diverse secondary metabolites and phenolic compounds with extraordinary antioxidant properties. Hence, these compounds could be used in amalgamation with biogenic derived nanoparticles (NPs) for better antioxidant potential. This review intends to increase our knowledge about the antioxidant functionalized nanoparticles and the mechanism by which antioxidants empower nanoparticles to combat oxidative stress.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3