Abstract
In this study, AlN epilayers were grown by ammonia-assisted molecular beam epitaxy on 3 nm h-BN grown on c-sapphire substrates. Their structural properties were investigated by comparing as-grown and postgrowth annealed layers. The role of annealing on the crystalline quality and surface morphology was studied as a function of AlN thickness and the annealing duration and temperature. Optimum annealing conditions were identified. The results of X-ray diffraction showed that optimization of the annealing recipe led to a significant reduction in the symmetric (0 0 0 2) and skew symmetric (1 0 −1 1) reflections, which was associated with a reduction in edge and mixed threading dislocation densities (TDDs). Furthermore, the impact on the crystalline structure of AlN and its surface was studied, and the results showed a transition from a surface with high roughness to a smoother surface morphology with a significant reduction in roughness. In addition, the annealing duration was increased at 1650 °C to further understand the impact on both AlN and h-BN, and the results showed a diffusion interplay between AlN and h-BN. Finally, an AlN layer was regrown on the top of an annealed template, which led to large terraces with atomic steps and low roughness.
Funder
ANR project GANEX
PACA (Provence Alpes Côte d’Azur) region
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献