Local Net Charge State of Collagen Triple Helix Is a Determinant of FKBP22 Binding to Collagen III

Author:

Ishikawa Yoshihiro1ORCID,Bonna Arkadiusz2ORCID,Gould Douglas B.13456ORCID,Farndale Richard W.2ORCID

Affiliation:

1. Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, CA 941583, USA

2. Department of Biochemistry, Downing Site, Cambridge CB2 1QW, UK

3. Department of Anatomy, University of California, San Francisco, CA 94143, USA

4. Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA

5. Bakar Aging Research Institute, University of California, San Francisco, CA 94143, USA

6. Institute for Human Genetics, University of California, San Francisco, CA 94143, USA

Abstract

Mutations in the FKBP14 gene encoding the endoplasmic reticulum resident collagen-related proline isomerase FK506 binding protein 22 kDa (FKBP22) result in kyphoscoliotic Ehlers–Danlos Syndrome (EDS), which is characterized by a broad phenotypic outcome. A plausible explanation for this outcome is that FKBP22 participates in the biosynthesis of subsets of collagen types: FKBP22 selectively binds to collagens III, IV, VI, and X, but not to collagens I, II, V, and XI. However, these binding mechanisms have never been explored, and they may underpin EDS subtype heterogeneity. Here, we used collagen Toolkit peptide libraries to investigate binding specificity. We observed that FKBP22 binding was distributed along the collagen helix. Further, it (1) was higher on collagen III than collagen II peptides and it (2) was correlated with a positive peptide charge. These findings begin to elucidate the mechanism by which FKBP22 interacts with collagen.

Funder

EDS Society

National Institutes of Health

Research to Prevent Blindness

All May See Foundation

Wellcome Trust

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3