Comparative Genomics Identifies the Evolutionarily Conserved Gene TPM3 as a Target of eca-miR-1 Involved in the Skeletal Muscle Development of Donkeys

Author:

Yang Ge1,Sun Minhao1,Wang Zhaofei1,Hu Qiaoyan1,Guo Jiajun1,Yu Jie1,Lei Chuzhao1ORCID,Dang Ruihua1ORCID

Affiliation:

1. Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China

Abstract

Species within the genus Equus are valued for their draft ability. Skeletal muscle forms the foundation of the draft ability of Equus species; however, skeletal muscle development-related conserved genes and their target miRNAs are rarely reported for Equus. In this study, a comparative genomics analysis was performed among five species (horse, donkey, zebra, cattle, and goat), and the results showed that a total of 15,262 (47.43%) genes formed the core gene set of the five species. Only nine chromosomes (Chr01, Chr02, Chr03, Chr06, Chr10, Chr18, Chr22, Chr27, Chr29, and Chr30) exhibited a good collinearity relationship among Equus species. The micro-synteny analysis results showed that TPM3 was evolutionarily conserved in chromosome 1 in Equus. Furthermore, donkeys were used as the model species for Equus to investigate the genetic role of TPM3 in muscle development. Interestingly, the results of comparative transcriptomics showed that the TPM3 gene was differentially expressed in donkey skeletal muscle S1 (2 months old) and S2 (24 months old), as verified via RT-PCR. Dual-luciferase test analysis showed that the TPM3 gene was targeted by differentially expressed miRNA (eca-miR-1). Furthermore, a total of 17 TPM3 gene family members were identified in the whole genome of donkey, and a heatmap analysis showed that EaTPM3-5 was a key member of the TPM3 gene family, which is involved in skeletal muscle development. In conclusion, the TPM3 gene was conserved in Equus, and EaTPM3-5 was targeted by eca-miR-1, which is involved in skeletal muscle development in donkeys.

Funder

2020 Scientist Plus Engineer Program of Shaanxi Province of China

Central Guidance on Local Science and Technology Development Fund

Dong-E-E-Jiao Co. Ltd

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3