Unraveling the Immunopathological Landscape of Celiac Disease: A Comprehensive Review

Author:

Patt Yonatan Shneor12ORCID,Lahat Adi23ORCID,David Paula12ORCID,Patt Chen14,Eyade Rowand12ORCID,Sharif Kassem123ORCID

Affiliation:

1. Department of Internal Medicine B, Sheba Medical Center, Ramat Gan 52621, Israel

2. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel

3. Department of Gastroenterology, Sheba Medical Center, Ramat Gan 52621, Israel

4. The Adelson School of Medicine, Ariel University, Ariel 40700, Israel

Abstract

Celiac disease (CD) presents a complex interplay of both innate and adaptive immune responses that drive a variety of pathological manifestations. Recent studies highlight the role of immune-mediated pathogenesis, pinpointing the involvement of antibodies against tissue transglutaminases (TG2, TG3, TG6), specific HLA molecules (DQ2/8), and the regulatory role of interleukin-15, among other cellular and molecular pathways. These aspects illuminate the systemic nature of CD, reflecting its wide-reaching impact that extends beyond gastrointestinal symptoms to affect other physiological systems and giving rise to a range of pathological landscapes, including refractory CD (RCD) and, in severe cases, enteropathy-associated T cell lymphoma. The existing primary therapeutic strategy, a gluten-free diet (GFD), poses significant challenges, such as low adherence rates, necessitating alternative treatments. Emerging therapies target various stages of the disease pathology, from preventing immunogenic gluten peptide absorption to enhancing intestinal epithelial integrity and modulating the immune response, heralding potential breakthroughs in CD management. As the understanding of CD deepens, novel therapeutic avenues are emerging, paving the way for more effective and sophisticated treatment strategies with the aim of enhancing the quality of life of CD patients. This review aims to delineate the immunopathology of CD and exploring its implications on other systems, its complications and the development of novel treatments.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3