Apoptotic Effect of Gallic Acid via Regulation of p-p38 and ER Stress in PANC-1 and MIA PaCa-2 Cells Pancreatic Cancer Cells

Author:

Kim Jeong Woo12,Choi Jinwon12,Park Moon Nyeo1ORCID,Kim Bonglee12ORCID

Affiliation:

1. Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea

2. Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea

Abstract

Pancreatic cancer (PC) is currently recognized as the seventh most prevalent cause of cancer-related mortality among individuals of both genders. It is projected that a significant number of individuals will succumb to this disease in the forthcoming years. Extensive research and validation have been conducted on both gemcitabine and 5-fluorouracil as viable therapeutic options for PC. Nevertheless, despite concerted attempts to enhance treatment outcomes, PC continues to pose significant challenges in terms of achieving effective treatment alone through chemotherapy. Gallic acid, an endogenous chemical present in various botanical preparations, has attracted considerable attention due to its potential as an anticancer agent. The results of the study demonstrated that gallic acid exerted a decline in cell viability that was dependent on its concentration. Furthermore, it efficiently suppressed cell proliferation in PC cells. This study observed a positive correlation between gallic acid and the production of reactive oxygen species (ROS). Additionally, it confirmed the upregulation of proteins associated with the protein kinase-like endoplasmic reticulum kinase (PERK) pathway, which is one of the pathways involved in endoplasmic reticulum (ER) stress. Moreover, the administration of gallic acid resulted in verified alterations in the transmission of mitogen-activated protein kinase (MAPK) signals. Notably, an elevation in the levels of p-p38, which represents the phosphorylated state of p38 MAPK was detected. The scavenger of reactive oxygen species (ROS), N-Acetyl-L-cysteine (NAC), has shown inhibitory effects on phosphorylated p38 (p-p38), whereas the p38 inhibitor SB203580 inhibited C/EBP homologous protein (CHOP). In both instances, the levels of PARP have been successfully reinstated. In other words, the study discovered a correlation between endoplasmic reticulum stress and the p38 signaling pathway. Consequently, gallic acid induces the activation of both the p38 pathway and the ER stress pathway through the generation of ROS, ultimately resulting in apoptosis. The outcomes of this study provide compelling evidence to support the notion that gallic acid possesses considerable promise as a viable therapeutic intervention for pancreatic cancer.

Funder

Graduate School Innovation office, Kyung Hee University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3