Determination of Chewing Count from Video Recordings Using Discrete Wavelet Decomposition and Low Pass Filtration

Author:

Alshboul Sana,Fraiwan MohammadORCID

Abstract

Several studies have shown the importance of proper chewing and the effect of chewing speed on the human health in terms of caloric intake and even cognitive functions. This study aims at designing algorithms for determining the chew count from video recordings of subjects consuming food items. A novel algorithm based on image and signal processing techniques has been developed to continuously capture the area of interest from the video clips, determine facial landmarks, generate the chewing signal, and process the signal with two methods: low pass filter, and discrete wavelet decomposition. Peak detection was used to determine the chew count from the output of the processed chewing signal. The system was tested using recordings from 100 subjects at three different chewing speeds (i.e., slow, normal, and fast) without any constraints on gender, skin color, facial hair, or ambience. The low pass filter algorithm achieved the best mean absolute percentage error of 6.48%, 7.76%, and 8.38% for the slow, normal, and fast chewing speeds, respectively. The performance was also evaluated using the Bland-Altman plot, which showed that most of the points lie within the lines of agreement. However, the algorithm needs improvement for faster chewing, but it surpasses the performance of the relevant literature. This research provides a reliable and accurate method for determining the chew count. The proposed methods facilitate the study of the chewing behavior in natural settings without any cumbersome hardware that may affect the results. This work can facilitate research into chewing behavior while using smart devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IMChew: Chewing Analysis using Earphone Inertial Measurement Units;Proceedings of the Workshop on Body-Centric Computing Systems;2024-06-03

2. Rule-based systems to automatically count bites from meal videos;Frontiers in Nutrition;2024-05-17

3. A Novel Sensor Method for Dietary Detection;Lecture Notes in Computer Science;2024

4. Assessment Methods for Problematic Eating Behaviors in Children and Adolescents With Autism Spectrum Disorder;Journal of the Korean Academy of Child and Adolescent Psychiatry;2024-01-01

5. Wearable Camera Based Food Logging System;Proceedings of the 4th ACM International Conference on Multimedia in Asia;2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3