Artificial Intelligence-Driven Eye Disease Classification Model

Author:

Wahab Sait Abdul Rahaman1ORCID

Affiliation:

1. Department of Documents and Archive, Center of Documents and Administrative Communication, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia

Abstract

Eye diseases can result in various challenges and visual impairments. These diseases can affect an individual’s quality of life and general health and well-being. The symptoms of eye diseases vary widely depending on the nature and severity of the disease. Early diagnosis can protect individuals from visual impairment. Artificial intelligence (AI)-based eye disease classification (EDC) assists physicians in providing effective patient services. However, the complexities of the fundus image affect the classifier’s performance. There is a demand for a practical EDC for identifying eye diseases in the earlier stages. Thus, the author intends to build an EDC model using the deep learning (DL) technique. Denoising autoencoders are used to remove the noises and artifacts from the fundus images. The single-shot detection (SSD) approach generates the key features. The whale optimization algorithm (WOA) with Levy Flight and Wavelet search strategy is followed for selecting the features. In addition, the Adam optimizer (AO) is applied to fine-tune the ShuffleNet V2 model to classify the fundus images. Two benchmark datasets, ocular disease intelligent recognition (ODIR) and EDC datasets, are utilized for performance evaluation. The proposed EDC model achieved accuracy and Kappa values of 99.1 and 96.4, and 99.4 and 96.5, in the ODIR and EDC datasets, respectively. It outperformed the recent EDC models. The findings highlight the significance of the proposed EDC model in classifying eye diseases using complex fundus images. Healthcare centers can implement the proposed model to improve their standards and serve a more significant number of patients. In the future, the proposed model can be extended to identify a comprehensive range of eye diseases.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Prevalence of thyroid eye disease in Graves’ disease: A meta-analysis and systematic review;Chin;Clin. Endocrinol.,2020

2. Automated detection of mild and multi-class diabetic eye diseases using deep learning;Sarki;Health Inf. Sci. Syst.,2020

3. Real-time mobile teleophthalmology for the detection of eye disease in minorities and low socioeconomics at-risk populations;Elgin;Asia-Pac. J. Ophthalmol.,2021

4. (2023, August 10). WHO Report. Available online: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment.

5. Application of machine learning in ophthalmic imaging modalities;Tong;Eye Vis.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3