Wireless, Portable Fiber Bragg Grating Interrogation System Employing Optical Edge Filter

Author:

Ogawa KenORCID,Koyama ShouheiORCID,Haseda Yuuki,Fujita Keiichi,Ishizawa Hiroaki,Fujimoto Keisaku

Abstract

A small-size, high-precision fiber Bragg grating interrogator was developed for continuous plethysmograph monitoring. The interrogator employs optical edge filters, which were integrated with a broad-band light source and photodetector to demodulate the Bragg wavelength shift. An amplifier circuit was designed to effectively amplify the plethysmograph signal, obtained as a small vibration of optical power on the large offset. The standard deviation of the measured Bragg wavelength was about 0.1 pm. The developed edge filter module and amplifier circuit were encased with a single-board computer and communicated with a laptop computer via Wi-Fi. As a result, the plethysmograph was clearly obtained remotely, indicating the possibility of continuous vital sign measurement.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wearable FBG Sensor System for Respiratory Strain Measurement During Daily Activities;IEEE Sensors Journal;2024-07-01

2. Toward an FBG Interrogation Scheme for Temperature Measurement Based on Gaussian Optical Source;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

3. Stress Classification Using a Low-Cost Optical Fiber Physiological Sensor: A Preliminary Study;2023 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC);2023-11-05

4. Verification of Optimal Installation Point of FBG Sensor for Pulsation Strain Measurement;IEEE Sensors Journal;2023-08-15

5. AWG-Based Interrogator for FBG Sensors;2023 IEEE 24th International Conference of Young Professionals in Electron Devices and Materials (EDM);2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3