Optimization of Fatigue Performance of FDM ABS and Nylon Printed Parts

Author:

Yankin Andrey1ORCID,Serik Gaini1,Danenova Saniya1,Alipov Yerassyl1,Temirgali Ali1,Talamona Didier1ORCID,Perveen Asma1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

This research work aims to proceed with the optimization of Fused Deposition Modeling (FDM) printing parameters for acrylonitrile butadiene styrene (ABS) and polyamide (Nylon) to improve fatigue resistance. For that purpose, the methodology of the paper involves two main approaches: experimental study and finite element analysis. The experimental part of the paper used the Taguchi method to find the effects of printing internal geometry, printing speed, and nozzle diameter on the fatigue life of ABS and Nylon plastic materials. ANCOVA multiple linear regression and sensitivity analysis was used to investigate the effects of printing parameters on the fatigue life of materials. The analysis of the results revealed: Nylon performed better than ABS, but had a higher slope; the ‘tri-hexagon’ structure resulted in the highest fatigue life, but the effect was statistically significant only for ABS material; the fatigue life of both materials increased with decreasing the nozzle diameter; the printing speed had no statistically significant influence neither on ABS nor Nylon. The experimental results then were validated by numerical simulations and the difference between the values was within ±14% depending on the experiment. Such differences might occur due to numerical and experimental errors.

Funder

Ministry of Industry and Infrastructure Development of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3