Impact of Difluoromethylornithine and AMXT 1501 on Gene Expression and Capsule Regulation in Streptococcus pneumoniae

Author:

Ayoola Moses B.1ORCID,Shack Leslie A.1,Phanstiel Otto2ORCID,Nanduri Bindu1

Affiliation:

1. Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA

2. Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32827, USA

Abstract

Streptococcus pneumoniae (Spn), a Gram-positive bacterium, poses a significant threat to human health, causing mild respiratory infections to severe invasive conditions. Despite the availability of vaccines, challenges persist due to serotype replacement and antibiotic resistance, emphasizing the need for alternative therapeutic strategies. This study explores the intriguing role of polyamines, ubiquitous, small organic cations, in modulating virulence factors, especially the capsule, a crucial determinant of Spn’s pathogenicity. Using chemical inhibitors, difluoromethylornithine (DFMO) and AMXT 1501, this research unveils distinct regulatory effects on the gene expression of the Spn D39 serotype in response to altered polyamine homeostasis. DFMO inhibits polyamine biosynthesis, disrupting pathways associated with glucose import and the interconversion of sugars. In contrast, AMXT 1501, targeting polyamine transport, enhances the expression of polyamine and glucose biosynthesis genes, presenting a novel avenue for regulating the capsule independent of glucose availability. Despite ample glucose availability, AMXT 1501 treatment downregulates the glycolytic pathway, fatty acid synthesis, and ATP synthase, crucial for energy production, while upregulating two-component systems responsible for stress management. This suggests a potential shutdown of energy production and capsule biosynthesis, redirecting resources towards stress management. Following DFMO and AMXT 1501 treatments, countermeasures, such as upregulation of stress response genes and ribosomal protein, were observed but appear to be insufficient to overcome the deleterious effects on capsule production. This study highlights the complexity of polyamine-mediated regulation in S. pneumoniae, particularly capsule biosynthesis. Our findings offer valuable insights into potential therapeutic targets for modulating capsules in a polyamine-dependent manner, a promising avenue for intervention against S. pneumoniae infections.

Funder

National Institute for General Medical Sciences

COBRE Core B

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3