Comparative Evaluation of Reinforcement Learning Algorithms for Multi-Agent Unmanned Aerial Vehicle Path Planning in 2D and 3D Environments

Author:

Ali Mirza Aqib1ORCID,Maqsood Adnan1ORCID,Athar Usama1ORCID,Khanzada Hasan Raza1

Affiliation:

1. School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan

Abstract

Path planning in multi-agent UAV swarms is a crucial issue that involves avoiding collisions in dynamic, obstacle-filled environments while consuming the least amount of time and energy possible. This work comprehensively evaluates reinforcement learning (RL) algorithms for multi-agent UAV path planning in 2D and 3D simulated environments. First, we develop a 2D simulation setup using Python in which UAVs (quadcopters), represented as points in space, navigate toward their respective targets while avoiding static obstacles and inter-agent collisions. In the second phase, we transition this comparison to a physics-based 3D simulation, incorporating realistic UAV (fixed wing) dynamics and checkpoint-based navigation. We compared five algorithms, namely, Proximal Policy Optimization (PPO), Soft Actor–Critic (SAC), Deep Deterministic Policy Gradient (DDPG), Trust Region Policy Optimization (TRPO), and Multi–Agent DDPG (MADDPG), in various scenarios. Our findings reveal significant performance differences between the algorithms across multiple dimensions. DDPG consistently demonstrated superior reward optimization and collision avoidance performance, while PPO and MADDPG excelled in the execution time required to reach the goal. Furthermore, our findings reveal how algorithms perform while transitioning from a simplistic 2D setup to a realistic 3D physics-based environment, which is essential for performing sim-to-real transfer. This work provides valuable insights into the suitability of several reinforcement learning (RL) algorithms for developing autonomous systems and UAV swarm navigation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3