Reliable Indoor Pseudolite Positioning Based on a Robust Estimation and Partial Ambiguity Resolution Method

Author:

Li XinORCID,Huang Guanwen,Zhang Peng,Zhang Qin

Abstract

The unscented Kalman filter (UKF) can effectively reduce the linearized model error and the dependence on initial coordinate values for indoor pseudolite (PL) positioning unlike the extended Kalman filter (EKF). However, PL observations are prone to various abnormalities because the indoor environment is usually complex. Standard UKF (SUKF) lacks resistance to frequent abnormal observations. This inadequacy brings difficulty in guaranteeing the accuracy and reliability of indoor PL positioning, especially for phase-based high-precision positioning. In this type of positioning, the ambiguity resolution (AR) will be difficult to achieve in the presence of abnormal observations. In this study, a robust UKF (RUKF) and partial AR (PAR) algorithm are introduced and applied in indoor PL positioning. First, the UKF is used for parameter estimation. Then, the anomaly recognition statistics and optimal ambiguity subset of PAR are constructed on the basis of the posterior residuals. The IGGIII scheme is adopted to weaken the influence of abnormal observation, and the PAR strategy is conducted in case of failure of the conventional PL-AR. The superiority of our proposed algorithm is validated using the measured indoor PL data for code-based differential PL (DPL) and phase-based real-time kinematic (RTK) positioning modes. Numerical results indicate that the positioning accuracy of RUKF-based indoor DPL is higher with a decimeter-level improvement compared that of the SUKF, especially in the presence of large gross errors. In terms of high-precision RTK positioning, RUKF can correctly identify centimeter-level anomalous observations and obtain a corresponding positioning accuracy improvement compared with the SUKF. When relatively large gross errors exist, the conventional method cannot easily realize PL-AR. By contrast, the combination of RUKF and the PAR algorithm can achieve PL-AR for the selected ambiguity subset successfully and can improve the positioning accuracy and reliability significantly. In summary, our proposed algorithm has certain resistance ability for abnormal observations. The indoor PL positioning of this algorithm outperforms that of the conventional method. Thus, the algorithm has some practical application value, especially for kinematic positioning.

Funder

the China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3